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Multireflection boundary conditions for lattice Boltzmann models
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We present a general framework for several previously introduced boundary conditions for lattice Boltzmann
models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold:
first to give theoretical tools to study the existing link-type boundary conditions and their corresponding
accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using
these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann
models for a Reynolds number Re50 ~Stokes limit! for arbitrary inclination with the lattice directions. Nu-
merical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic
array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re
,200. These results show a significant improvement of the overall accuracy when using the linear interpola-
tions instead of the bounce-back reflection~up to an order of magnitude on the hydrodynamics fields!. Further
improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close
to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the
narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much
smoother with multireflection than with the other boundary conditions. Finally the good stability of these
schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in
a cylinder.

DOI: 10.1103/PhysRevE.68.066614 PACS number~s!: 47.11.1j, 47.45.2n, 05.20.Dd
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I. INTRODUCTION

Boundary conditions in kinetic~or particle! methods, the
lattice Boltzmann~LB! model being one such example, a
fundamentally different from their equivalent for more trad
tional computational fluid dynamics~CFD! methods, such as
finite-difference or finite-element ones. In many tradition
CFD methods the boundary conditions~for instance fluid
velocity, pressure, or some of their derivatives! are explicitly
set on the nodes defining the mesh boundary. In kin
methods, the particles~populations! leaving the computa-
tional domain have to be replaced by particles~populations!
entering it. The properties of these entering particles de
the boundary conditions and can be either givena priori or
computed from those of the leaving particles. Such bound
conditions can only be set exactly from a perfect knowled
of the kinetic properties of the studied flow. In general th
perfect knowledge is not available and some approximati
have to be used, leading to some discrepancies betwee
particle distributions prescribed by the fluid dynamics a
the boundary conditions. The resulting mismatch obviou
limits the accuracy of modeling usual macroscopic bound
conditions by kinetic methods. It is well known in the co
text of rarefied gas dynamics that the physical effect of s
mismatch creates a region, located near the boundary, w
the discrepancy between the local distributions and the fl
ones is exponentially damped away from it~see, for instance
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Ref. @1#!. This layer near the boundaries is known as t
Knudsen or accommodation layer and leads at the ma
scopic level to an apparent nonzero velocity at the bound
~slip velocity!. Moreover, in numerical methods using an u
derlying grid, the actual boundaries are not located on
grid points but at positions depending upon the details of
boundary conditions.

It has been recognized quite early that such effects ind
exist in lattice gases and lattice Boltzmann equation. In R
@2# Knudsen layers have been studied for two simple ori
tations of the boundary on a triangular lattice and it has b
shown for Couette flows that the bounce-back condition
cates the no-slip walls midway through the last fluid no
and the first outside one. This result has been extende
Refs. @3,4# to Poiseuille-Hagen flows for which it has bee
shown that exact parabolic profiles, for the same no-s
walls as in the Couette case, can be recovered for spe
relations between some eigenvalues of the collision opera
Despite these results there have still been numerous atte
to set the boundary conditions on the lattice nodes~see, for
instance, Refs.@5–9#, to name a few!. Although most of
them have given reasonable results for flat boundary par
to the main lattice planes, they are not accurate enough w
dealing with inclined flat walls or curved ones. To solve th
problem we had proposed a different approach based on
reconstruction of the unknown populations from a seco
order Chapman-Enskog expansion in Ref.@10#. Recently
several authors have proposed various boundary condit
based on a link approach@11–17#.

The motivation of the present work is twofold. First w
want to emphasize the existence of general theoretical t
to study boundary conditions. Second we extend the res
of Ref. @14# in order to derive boundary conditions for ge

de
s:
©2003 The American Physical Society14-1



g-
ec
ar
ef
ion
m

ar
d
th
rt
If
b
-

xis
t
io
ge

lu
de
e
e
b

nt
ic
er

di
o
re

et
d

en
s

e
a
o
r
I

ng
fie
15
.
k
ar
l-

fo
ar
bl
g

ov
n

ne

the
al

of

for

atial
i-

oor-

-

I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
eral flows, called here ‘‘multireflection,’’ such that the ma
nitudes of the Knudsen layers are only third-order corr
tions to the kinetic problem. The analysis of the bound
conditions is done along the lines already introduced in R
@2–4#: the boundary condition is written as a closure relat
between an unknown population entering the fluid and so
others known from the fluid dynamics; the populations
then replaced in the closure relation by their second-or
approximations; finally a Taylor expansion of the result at
boundary node gives a second-order estimate of the pe
bation of the kinetic solution by the boundary condition.
this estimate is zero, the boundary condition is said to
‘‘third-order kinetic accurate.’’ For some flows and geom
etries~for instance Poiseuille flows along the symmetry a
of the lattice!, a nonzero estimate can be recast as a shif
the actual location of the walls and the boundary condit
does not create Knudsen layers; this is not the case for
eral flows and the estimate gives the order of magnitude
the Knudsen layer produced by the boundary condition.

Indeed this does not preclude the fact that the bulk so
tion of the lattice Boltzmann equation is only a second-or
approximation of the bulk solution of the Navier-Stokes on
If the physics of the studied flow is dominated by bulk ph
nomena, third-order kinetic accuracy would probably not
necessary. However, our study has been done in the co
of moderate resolutions and/or moving boundaries for wh
we will show that decreasing the Knudsen effects is v
important.

The scope of this work is restricted to boundary con
tions involving only populations moving along the same
opposite directions on the same line and on at most th
fluid nodes at the same time. Presently the third-order kin
accuracy of multireflection is proven theoretically and stu
ied numerically for incompressible steady flows. The ext
sion of these results to compressible and/or unsteady flow
left for future work.

In Sec. II we give the general framework for our lattic
Boltzmann models and sketch the associated Chapm
Enskog expansion. Section III is devoted to the definition
the boundary conditions considered here and to their theo
ical analysis. The results are summarized in Sec. III F.
Sec. IV the standard definition of the momentum excha
between the fluid and a boundary is recalled and a modi
definition is proposed to improve the accuracy. Using a
velocity model in three dimensions~denoted D3Q15 in Ref
@27#!, these boundary conditions have been tested for Sto
flows over a cubic array of spheres in Sec. V A 4, a squ
array of cylinders in Sec. V A 5, and a periodic line of cy
inders between moving walls in Sec. V A 6. Results
Navier-Stokes flows over a square array of cylinders
given in Sec. V B. In Sec. VI we present some possi
modifications of the static algorithms to deal with movin
boundaries and we test them by simulating a cylinder m
ing between two parallel flat walls and a sphere moving i
cylinder.

II. LATTICE BOLTZMANN MODELS

A. General models

The lattice Boltzmann models considered here are defi
on a cubic lattice inD dimensions byb5bm11 velocities
06661
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cW i , i P$0, . . . ,bm% (cW0 being a zero vector!. The velocity set
is chosen such that it has the same symmetry group as
cubic lattice; in particular it is invariant under the centr
symmetry~i.e., if cWq is an element of the set,cW q̄52cWq is also
an element!, and the set is invariant by any exchange
coordinates.

These models obey the following evolution equation
the populationf i moving with velocitycW i :

f i~rW1cW i ,t11!5 f̃ i~rW,t !, ~1!

f̃ i~rW,t !5 f i~rW,t !2@A•f ne~rW,t !# i1tp* cW i•FW , ~2!

whereA is the collision matrix, thetp* are parameters given

later @see Eqs.~7! and ~8!, and Table I#, FW is a body force,
and f ne5f2f eq @ f5( f i)#. The equilibrium distributionf eq

5( f i
eq) is a function of the conserved quantitiesr andJW such

that

(
i 50

bm

f i
eq5(

i 50

bm

f i5r, ~3!

(
i 50

bm

f i
eqcia5(

i 50

bm

f icia5Ja ; a. ~4!

Here and in the sequel, greek subscripts stand for the sp
coordinates,x, y, and so on; in addition repeated greek ind
ces correspond to implicit summations over the space c
dinates.

The collision matrixA is defined by its eigenvectorsek
and eigenvalueslk ~in the interval ]0,2@ for linear stability!:

A•f ne5 (
k50

bm lk

ieki2
~ f ne

•ek!ek . ~5!

As in Ref.@18#, the eigenvectorsek are built from polynomi-
als of the components of thecW i which are then orthogonal
ized. The procedure starts with theD11 b-vectors e0 ,
(e0) i51, andek , (ek) i5cia (kP$1, . . . ,D%). It then pro-
ceeds with ab vector eD11 built on theci

25icW i i2 and or-
thogonal toe0 , D21 pairwise orthogonal vectors built from
Dcia

2 2ci
2 , and D(D21)/2 vectorsek , (ek) i5ciacib with

TABLE I. Equilibrium weightstp and tp* .

Model t0 t0* t1* 53t1 t2* 53t2 t3* 53t3

D2Q9
4

9

325cs
2

3cs
2

1

3

1

12

D3Q15
2

9

327cs
2

3cs
2

1

3

1

24
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MULTIREFLECTION BOUNDARY CONDITIONS FOR . . . PHYSICAL REVIEW E68, 066614 ~2003!
aÞb. Note that the preceding vectors have to be all nonz
in order to recover the usual Navier-Stokes equations.
procedure continues with higher degree polynomials
ends when the set of linearly independent orthogonal vec
has been exhausted. This construction is unique if it proce
by increasing polynomial degrees and decreasing symm
i.e.,b vectors having in the physical space the symmetry o
scalar, then of a vector, a second rank tensor, and so on.
set of vectorsek defines what is usually called the mome
basis, the moments being the projections of population
tribution f on them: mk5f•ek . Finally the equilibrium is
defined in the moment space as a function of the conse
quantities compatible with the symmetries of the lattice~see
Refs.@15,18–21# for details and examples of moment base!.

B. Simplified models

Although the theory for boundary condition can be do
in the above general framework, the algebra is simpler w
using only two eigenvalues:ln for the vectorsek unchanged
by central symmetry andl2 for the others, and the following
equilibrium distribution:

f i
eq~r,JW !5tp* ~cs

2r1Ji !13tp

3 j i
22 j 2

2r̃
, ~6!

whereJi5JW•cW i5Jacia , j i5W•cW i5 j acia , p5icW i i2, andr̃ is
equal tor(rW,t) for the compressible Navier-Stokes equati
and tor0 for its incompressible variant~see Refs.@22,23#!.
The tp and tp* are model dependent and must obey at le
the constraints

(
i 50

bm

tp5(
i 50

bm

tp* cs
251, ~7!

3(
i 50

bm

tpciacib5(
i 50

bm

tp* ciacib5dab ; a,b, ~8!

coming from the conservation laws~3! and~4!. The momen-
tum W used in the nonlinear term of Eq.~6! is defined as

W5JW2I fFW , ~9!

whereI f50 for the standard definition andI f521/2 for the
modified one which is used here~see Refs.@3,24–26#!. The
‘‘incompressible’’ variant withr̃5r0 has also been used fo
all the steady simulations presented here.

The parameterstp and tp* are given for theD2Q9 and
D3Q15 models in Table I~note that thetp are those given in
Refs. @27,28# and thetp* are defined to keep the speed
sound as a free parameter!. With these choices the nonlinea
terms and the viscosity are isotropic and the viscosity
given by
06661
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1

3 S 1

ln
2

1

2D5
2t21

6
, ~10!

with t51/ln .
In the simulations reported in Sec. V A, we use the f

lowing equilibrium:

f i
eq~r,JW !5tp* ~cs

2r1Ji !, ~11!

which leads to the Stokes equation which is written for s
tionary incompressible case as

¹W P2FW 5nDW, ¹W • jẆ50, P5cs
2r. ~12!

C. Simplified Chapman-Enskog expansion

Neglecting the third-order and higher derivatives of t
momentum and the second-order and higher derivative
the density and of the nonlinear terms, the populations ca
approximated as

f i' f i
eq1 f i

(1)1 f i
(2) , ~13!

where f i
(1) is related to the first-order derivatives of the m

mentum through some second-order tensorEiab
(2) by

f i
(1)52

1

ln
]b j aEiab

(2) , ~14!

and f i
(2) is related to the second-order derivatives of the m

mentum and the first-order derivatives of the nonlinear ter
through some third-order tensorEiabg

(3) by

f i
(2)5

1

l2
S n]bg j a2]g

j a j b

2r̃
D Eiabg

(3) . ~15!

The projections of the tensorsEiab
(2) and Eiabg

(3) on the first
D11 vectorsek must be equal to zero due to the conserv
tion laws ~3! and ~4!. Since]b j a is unchanged by a centra
symmetry while ]bg j a and ]g„j a j b /(2r̃)… change their
signs, it comes

~A•f ne! i5ln f i
(1)1l2f i

(2) . ~16!

Taking the value of the terms in Eq.~13! at (rW,t) and (rW

1cW i ,t11), the Taylor expansion of the differencef i(rW

1cW i ,t11)2 f i(rW,t) must be equal to the corresponding e
pansion of 2(A•f ne) i1tp* cW i•FW . After some tedious but
straightforward algebra, one gets

Eiab
(2) 5tp* ~ciacib2cs

2dab!, ~17!

Eiabg
(3) 5tp* ~3ciacibcig2ciadbg2cibdag2cigdab!.

~18!
4-3
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
The tensorsEiab
(2) andEiabg

(3) are unchanged by any permut
tion of their greek subscripts. In general, their compone
are linear combinations of the components of theek’s intro-
duced in Sec. II A. For theD2Q9 andD3Q15 models con-
sidered here, most of the componentsEiab

(2) and Eiabg
(3) are

equal to components of someek , except for theEiaa
(2) . Writ-

ing

Eiaa
(2) 5tp* F S cia

2 2
ci

2

D D 1S ci
2

D
2cs

2D G , ~19!

the Eiaa
(2) are linear combinations of the moments built

Dcia
2 2ci

2 and of ci
22Dcs

2 . The latter components can b
expressed in turn as linear combinations, depending oncs

2 ,
of the ek’s built on ci

2 andci
4 .

For the models such thatcia
3 5cia , the diagonal element

of Eiabg
(3) are zero:Eiaaa

(3) 50. For theD2Q9 model,Eixyy
(3)

and Eiyxx
(3) are, up to a multiplicative constant, the comp

nents of the two ‘‘cubic’’ ek’s. For the D3Q15 model,
Eixyy

(3) 5Eixzz
(3) and Eixyz

(3) Þ0; with their independent permuta
tions of x, y, andz, they are, up to a multiplicative constan
the components of the four cubicek’s.

III. SIX-POPULATION BOUNDARY CONDITIONS

A. Definitions

The boundary conditions presented here are based on
following definitions.

~1! Fluid nodesare defined as the nodesrW such that~a! the
collision step is given by Eq.~2! without any change;~b! the
propagation step between them is given by Eq.~1!. The set
of fluid nodes is denotedF. The nodes that are not inF are
considered as ‘‘outside’’ nodes.

~2! A boundary node rW
bPB is defined as a fluid node

having at least one neighborrWb1cWq ~wherecWqP$cW i%) which
is not a fluid node. The set of boundary nodes and the se
cut links ~connecting a boundary node to an outside one! are
denotedB andC, respectively.

~3! The boundary conditions are given on
(D21)-surfaceV which intersects the link betweenrWb and
rWb1cWq at rWb1dq cW q ~see Fig. 1!. We here consider only Di-
richlet boundary conditions corresponding to a given vel
ity uW w(rWb1dqcWq ,t11) on V. The associated momentumWw
is defined by

FIG. 1. A boundary surface cutting atrWb1dq cW q the link between

fluid noderWb and an outside one atrWb1cWq . The solid circles repre-
sent the fluid nodes and the open circle represents an outside
06661
ts
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Ww5 r̃buW w , ~20!

where r̃b is equal tor(rWb ,t) for the compressible Navier
Stokes and tor0 for its incompressible variant@22,23#, ac-
cording to the choice made for Eq.~6!.

After the propagation step att, the postcollision popula-
tion f̃ q(rWb ,t) has left the fluid and can be thought to be
the outside noderWb1cWq as f q(rWb1cWq ,t11). At the same
time the populationf q̄(rWb ,t11), corresponding to the direc
tion cW q̄52cWq , is unknown and has to be supplied by th
boundary condition. In the sequel we will restrict our atte
tion to the following closure relation:

f q̄~rWb ,t11!5k1f q~rWb1cWq ,t11!1k0f q~rWb ,t11!

1k21f q~rWb2cWq ,t11!1k̄21f q̄~rWb2cWq ,t11!

1k̄22f q̄~rWb22cWq ,t11!2wqtp* j qw1tp* Fq̄
pc,

~21!

where the symbols with an overbar refer to quantities as
ciated withcW q̄ . The coefficientsk1 , k0 , k̄21 , k21 , k̄22 are
referred to as the coefficients of the interpolations or of
multireflection boundary condition. The termwqtp* j qw is

used to set the Dirichlet boundary condition (j qw5Ww•cWq).
The termFq̄

pc is discussed in Sec. III E.
Using Eq.~1!, relation~21! can also be written in terms o

the postcollision distributions, either for some terms or
all of them, as in

f q̄~rWb ,t11!5k1 f̃ q~rWb ,t !1k0 f̃ q~rWb2cWq ,t !

1k21 f̃ q~rWb22cWq ,t !1k̄21 f̃ q̄~rWb ,t !

1k̄22 f̃ q̄~rWb2cWq ,t !2wqtp* j qw1tp* Fq̄
pc. ~22!

The choice between Eq.~21! and Eq.~22! is mostly a matter
of taste. Equations~29! and ~31! below have been obtaine
with Eq. ~22!; using Eq.~21! instead leads to the same fin
results for steady flows, but with different intermediate ste

The above boundary condition has the following prop
ties. First, withFq̄

pc
50, it is a generalization of the bounce

back rule~with the Dirichlet condition! and of the linear and
quadratic interpolations introduced in Ref.@14#: bounce back
corresponds to

k151, wq52, andk05k215k̄215k̄2250; ~23!

the upwind linear interpolation for 0<dq<1/2 corresponds
to

k152dq , k05122dq , wq52,

and k215k̄215k̄2250; ~24!

de.
4-4
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MULTIREFLECTION BOUNDARY CONDITIONS FOR . . . PHYSICAL REVIEW E68, 066614 ~2003!
and the downwind linear interpolation for 1/2<dq corre-
sponds to

k15
1

2dq
, k̄215

2dq21

2dq
, wq5

1

dq
,

and k05k215k̄2250. ~25!

Note also that Eqs.~33!–~36! of Ref. @17# give

k15
dq

11dq
, k05

12dq

11dq
, k̄215

dq

11dq
,

wq5
2

11dq
, and k215k̄2250. ~26!

The upwind~downwind! quadratic interpolations in Ref.@14#

correspond tok̄215k̄2250 (k05k2150), the other coef-
ficients being given in their Eq.~6a! @Eq. ~6b!, their q being
replaced by ourdq].

Second relations~21! and ~22! involve only the popula-
tions considered in Ref.@14#.

Finally all the required information is available at th
boundary noderWb and its fluid neighborrWb2cWq , using their
four postcollision distributions at timet, see Eq.~22!, and
f q(rWb2cWq ,t11) after the propagation step. This property
quite important for parallel codes in which the communic
tions are restricted to the nearest neighbors along6cWq .
Equation ~22! requires three fluid nodes along the link
order to be used as such. When there are only two fl
nodes available, the equation can be modified in sev
ways. The simplest one, used here, consists in repla
f q(rWb2cWq ,t11) by f q(rWb2cWq ,t) in relation ~21!. A second
one applies when the boundary forrWb22cWq is a flat wall
located atdq51/2; in this case the bounce-back condition
applied first and its result provides the missing populatio

Note that the boundary conditions~21! or ~22! do not in
general enforce the conservation of the mass defined fo
fluid cells in Eq.~3!. This has to be contrasted to the boun
ary conditions of Refs.@12# and @16#.

B. Closure relation

In the sequel we use the following notations:j q5W•cWq

andFq5FW •cWq are the projections ofW andFW on cWq ; ]q and
]qq are the first and second derivatives alongcWq (]q
5cqa]a). With these notations and with relations~17! and
~18!, the first- and second-order nonequilibrium terms~14!
and ~15! become, respectively,

f q
(1)52tp*

1

ln
~]qj q2cs

2¹W • jW !, ~27!
06661
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f q
(2)5tp*

1

l2
S n~3]qqj q2D j q22]q¹W • jW !

2]q

3 j q
22 j 2

2r̃
1]a

j a j q

r̃
D . ~28!

The closure relation~22! is then analyzed by replacing th
distributionsf q and f q̄ ~or f̃ q and f̃ q̄) by their second-order
Chapman-Enskog expansion. This first step is followed b
Taylor expansion of the conserved quantities around th
values atrWb ~see Appendix A!. For incompressible flows
¹W • jW50, relation~22! leads to

A0 j q1A1]qj q1A2]qqj q1Fq̄
pc

1~AP21!S P1
3 j q

22 j 2

2r̃
D

1AnS nD j q1]q

3 j q
22 j 2

2r̃
2]a

j a j q

r̃
D

1AP8]qS P1
3 j q

22 j 2

2r̃
D 1AFFq

5wqj qw1O~¹W • jW !1O~e3!, ~29!

with

AP5k11k01k̄211k211k̄2251, ~30!

A05222~ k̄211k̄22!,

A1512~k012k212k̄22!,

AF5122~ k̄211k̄22!12I f@12~ k̄211k̄22!#,

AP852~k012k211k̄22!,

A2523nAn1Aj1Aj 8 ,

An52F 1

l2
1S 1

l2
21D @122~ k̄211k̄22!#G ,

Aj5S k0

2
12k212

k̄22

2
D ,

Aj 85S 1

ln
21D ~k012k211k̄22!, ~31!

where the termk1 has been removed fromA0 to Aj 8 using
AP51, a condition required to remove the pressure~density!
term from the closure relation~29! and which is always as
4-5
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
sumed to be satisfied in what follows. Note that the nonlin
terms disappear when the linear equilibrium~11! is used;
then Eq.~29! is obviously verified for the linear equilibrium
if the flow and the forcing are perpendicular tocWq ( j q5 j qw

5Fq50), ]qP50, andFq̄
pc

50.
Note that the closure relation~29! applies also to the

boundary conditions of Refs.@11# and @13# by replacingFq̄
pc

by the equilibrium population computed at the solid node

C. Couette flow

Let us first consider the flow between two parallel plan
moving with parallel but different velocities in the absen
of body force (Fq50). The corresponding steady flow
called Couette flow, is a pure shear flow for which the de
sity is uniform and only the first-order spatial derivatives a
nonzero~uniform shear!. TakingFq̄

pc
50 and thelinear equi-

librium ~11!, Eq. ~29! becomes

A0 j q1A1]qj q5wqj qw . ~32!

Then the Dirichlet boundary conditionj qw is met at rWb

1dq cW q when the following conditions are satisfied:

A1

A0
5dq , ~33!

wq5A0 . ~34!

Using Eqs.~30!, ~33!, and~34! the coefficientsk1 , k0, and
wq must be related to the other ones by

k152dq1k212~112dq!k̄212~212dq!k̄22 , ~35!

k05122dq22k2112dqk̄211~112dq!k̄22 , ~36!

wq52~12k̄212k̄22!. ~37!

For the bounce-back coefficients~23! these conditions are
satisfied only if dq51/2. This is possible only when th
moving planes are parallel to the symmetry planes of
underlying lattice, for which the links are either perpendic
lar to the velocity or cut midway through the boundary nod
and the nearest outside ones. For these special orientatio
the moving planes, the solution of the linear LB equati
with bounce back is exact~up to machine accuracy! if the
planes are located atdq51/2 ~as found in Ref.@2#!; note that
this exact solution is lost and the apparent convergence
is only first-order in the grid resolution if the planes a
mistakenly located on the boundary nodes or on the nea
outside ones. For the other orientations of the moving pla
the bounce-back rule is no longer compatible with Coue
flows. Since for these orientationsdq takes values between
and 1, one expects a first-order convergence rate with
grid resolution.
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When the multireflection coefficients are chosen such t
relations~35!–~37! hold for all the boundary nodes and link
the Couette flow is an exact solution of the linear LB equ
tion with the corresponding boundary conditions for any o
entation of the moving planes and any distances betw
them. It is easy to check that this is the case for the lin
interpolations~24! and ~25!.

At this point it is important to realize that relations~35!–
~37! are necessary conditions for any order (>1) boundary
conditions and apply implicitly in the following sections.

D. Poiseuille-Hagen flow between parallel plates

Let us now consider the flow between two parallel pla
walls, at rest and symmetric with respect to the origin, a
due to uniform forcingFW parallel to the walls. Along any line
parallel tocWq , the coordinatesxq ~or any length! are defined
usingcWq as unit vector and the middle of the fluid segment
the origin. Then the planes intersect the line at6(xqb1dq)
and the exact solution of the linear LB equation is a pa
bolic flow given by

j q5 j 0qS 12
4xq

2

Hqeff
2 D , ~38!

whereHqeff is an effective width depending on the bounda
condition. DenotingQq the projection ofcWq on the direction
perpendicular to the walls~in lattice unit!, since]qP50 and
]qqj q5Qq

2D j q for Poiseuille flows,j 0q is related toFq , Qq ,
Hqeff , andn by

Fq5 j 0q

8n

Qq
2Hqeff

2
. ~39!

Taking Fq̄
pc

50 and using Eq.~10! and Eqs.~35!–~38! and
neglecting the nonlinear terms@linear equilibrium~11!#, Eq.
~29! leads to the following relation betweenHqeff and Hq

52(xqb1dq), the prescribed width alongcWq :

Hqeff
2 5Hq

216L224dq
22

8n

Qq
2 S 1

l2
1I fD1

4~k212k̄22!

12k̄212k̄22

1
12n

12k̄212k̄22

@122dq1~112dq!k̄21

1~312dq!k̄22#, ~40!

where

L25
4

3 S 1

ln
2

1

2D S 1

l2
2

1

2D . ~41!

For a forcing along one of the main axes (x, y, etc.!, either
j q50 ~and the closure relation is verified! or Qq

251 and Eq.
~40! relates the effective width of the parabolic profile to
4-6
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prescribed value. For the bounce-back rule@dq51/2 and the
coefficients given in Eq.~23!# and I f521/2, Eq. ~40! be-
comes

Deff
2 5D1/2

2 14L221, ~42!

whereDeff is the effective diameter andD1/2 is the diameter
based on the middle of the cut links. ForL251/4 or

l2~ln!58
22ln

82ln
, ~43!

the Poiseuille profile is the exact Poiseuille solution found
@3,4# for walls located at6(xqb11/2), as for Couette flows
Note that for Bhatnagar-Gross-Krook~BGK! models (l2
5ln), @45# L2512n2 and the walls are located exactly
6(xqb11/2) for n51/A48. WhenL2Þ1/4, the relative er-
ror made by takingD1/2 instead ofDeff is approximatively
(4L221)/(2D1/2

2 ). Then locating the walls on the middle o
the cut links is second-order accurate, however the prefa
4L221 can be large for large values ofL2. For the BGK
case, the prefactor is 48n221 and increases very rapidl
with the viscosity: for instance, ifD1/2510 lattice units and
n51 (t57/2), Deff'12.1, i.e., the relative error is large
than 20%~for t550, the effective width is larger than 1
times the prescribed one, see, for instance, Fig. 2 in Ref.@7#!.

A very important property of the bounce-back conditi
for the measurements reported in Sec. V A is that the per
ability is independent of the viscosity if the coefficientL2 is
kept constant, even for arbitrary complex flows. For ea
particular flow, the precision can be further improved for
appropriate choice ofL2 @29# ~a good starting value being i
general close to 1/4). So far we have been unable to pr
theoretically this property; however, this is strongly co
firmed by all our numerical simulations~see Sec. V A 3!.

For the interpolations of Ref.@14# and Qq
251, Eq. ~42!

gives the error in the wall location as a function ofn, L2, dq
2

and I f . It is again possible to choosel2 as a function ofln

to set this error to zero, but this is no longer possible fo
fixed value ofL2. For arbitrary inclined Poiseuille flows, th
errors cannot be canceled for all the values ofdq for constant
values ofln , l2, and I f . As a consequence, none of th
interpolations of Ref.@14# give exact parabolic profiles fo
arbitrary inclined Poiseuille flows.

By setting two coefficients in the set$k0 ,k21 ,k̄21 ,k̄22%
to zero, we have been able to derive six sets of relations
k1 and the two other coefficients, giving exact inclined P
seuille flows. In addition these sets are independent ofQq for
I f521/l2. However, we did not succeed in finding rules
choose among them as a function ofdq in order to guarantee
numerical stability. In addition, these results are superse
by the results of the following section.

E. General flows

For general flows, the relation betweenD j q and]qqj q is
not known a priori and the Dirichlet boundary condition
exact up to second order,
06661
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j qw~rWb1dq cW q!5 j q~rWb1dq cW q!

5~ j q1dq]qj q1 1
2 dq

2]qqj q!~rWb!, ~44!

cannot be obtained from Eq.~29! if Fq̄
pc

50. However, Eqs.
~29! and~44! match when the following relations are verifie
~sufficient conditions!:

AF50, AP850, wq5A0 ,

A1

A0
5dq ,

A213nAn

A0
5 1

2 dq
2 ,

Fq̄
pc

5AnS n~3]qqj q2D j q!2]q

3 j q
22 j 2

2r̃
1]a

j a j q

r̃
D

5
Anl2

tp*
f q

(2) , ~45!

where the last right hand side term comes from Eq.~28!.
The conditionsI f521/2 andAF50 imply A052, k̄21

52k̄22 , nAn52L2/2, and

tp* Fq̄
pc

5
L2

2n
f̃ q

(2)52
L2

2n
l2f q

(2) . ~46!

From a technical point of view,f̃ q
(2) is computed from the

part of the sum in Eq.~5! restricted to theek built from the
third-order polynomials~the nonzeroEiabg

(3) in Sec. II C!.
The conditionsI f521/2 and~45! lead to

k152dq1dq
2 ,

k05
3

2
23dq22dq

2 ,

k2152 1
2 1dq1dq

2 ,

k̄215 1
2 2dq ,

k̄2252 1
2 1dq ,

wq52. ~47!

It is easy to check that 0<k1<3, 27/2<k0<3/2, and
21/2<k21<3/2 for 0<dq<1, i.e., these coefficients hav
values outside the interval@21,1# for some values ofdq .
Although we do not have solid stability analysis for th
boundary conditions, we have found numerically that valu
outside@21,1# very often lead to numerical instabilities.
4-7
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Noticing that the macroscopic closure relation~29! is not
changed, at least up to third order, under the following tra
formation:

k1→~k12k!/~k11!, k0→~k012k!/~k11!

k21→~k212k!/~k11!, k̄21→~ k̄2112k!/~k11!,

k̄22→~ k̄222k!/~k11!,

wq→wq /~k11!, Fq̄
pc→Fq̄

pc/~k11!, ~48!

wherek is an arbitrary constant, a one-parameter family
coefficient can be constructed. In order to show this res
one has to use the projected stationary Navier-Stokes e
tion:

]a

j a j q

r̃
1]qP5Fq1nD j q . ~49!

For instance, taking

k52 1
2 ~122dq2dq

2! ~50!

leads to a new set of coefficients

k151,

k052k̄215
122dq22dq

2

~11dq!2
,

k2152k̄225
dq

2

~11dq!2
,

wq5
4

~11dq!2
, ~51!

which stay in the interval@21,1# for 0<dq<1. This set of
coefficients share some properties of the bounce-back co
tion. On the positive side the higher-order errors~hence the
permeability! are found independent of the viscosity f
fixed values ofL2. On the negative side the correspondi
boundary condition for the staggered invariants is a free-
condition, i.e., the staggered invariants are not damped
the boundary when they appear. As for bounce back@30#,
this effect can be killed by usingf q(rWb1cWq ,t) instead of
f q(rWb1cWq ,t11) in Eq. ~21!.

A probably better way to avoid staggered invariants is
derive an other set of coefficients withk1Þ1 for dq.0 and
the following constraints:

0<k1<1 and $k0 ,k21 ,k̄21 ,k̄22%P@21,1#,
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for 0<dq<1. ~52!

Choosing the parameterk* 522k0 and introducing the
following polynomials ofdq :

k t5312dq ,

ks5116dq14dq
2 ,

k f5~k t1ks!/252~11dq!2, ~53!

the family of coefficients derived from Eq.~47! with trans-
formation ~48! can be written as

k15
k* k f

ks
21,

k0522k* ,

k215~k f2k t12!
k*

ks
21,

k̄21522
k* k t

ks
,

k̄225~k t22!
k*

ks
21,

wq5
4k*

ks
. ~54!

Constraints~52! are satisfied provided that

maxH 1,
ks

k t
J <k* <

2ks

k f
. ~55!

The upper bound corresponds to solution~51!. The lower
bound is 1 for 0<dq<d0 (k051) and ks/k t for d0<dq

<1 (k̄2151), with d05(A321)/2 ~when dq5d0 , k f5k t
5ks).

For dq50 the interval reduces tok* 51 and k15k0

51, k̄21521, and k215k̄2250. For dq51, k*
P@11/5,11/4# andk0 reach a maximal valuek0m521/5 for
k* 511/5 (k153/5, k2150, k̄2151, andk̄22522/5).

When dq5d0, interval ~55! is @1,2# and is the largest
available. k* 51 gives k150, k05k̄2151, k2153
22A3, andk̄2252(A322); k* 53/2 givesk15k05k̄21

51/2, k215523A3, and k̄225(6A3211)/2; andk* 52
givesk151, k05k̄2150, andk2152k̄225724A3.

Among the infinite set of functionsk* (dq) that satisfy
~55!, we have chosen to use in Sec. V B
4-8
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TABLE II. Valid range fordq , coefficientsk1 , k0 , k21 , k̄21 , k̄22 , wq , andFq̄
pc for the different boundary conditions: bounce ba

~BB!; upwind and downwind linear interpolation~ULI and DLI!; upwind and downwind quadratic interpolation~UQI and DQI!; multire-
flection ~MR!.

BB ULI DLI UQI DQI MR
dq

1
2 @0,1

2 # @
1
2 ,1`@ @0,1

2 # @
1
2 ,1@ @0,1#

k1 1 2dq
1

2dq
dq(112dq

2)
1

dq~2dq11!

k*kf

ks
21

k0 0 122dq 0 124dq
2 0 22k*

k21 0 0 0 2dq(122dq) 0 k12k̄2221

k̄21 0 0
2dq21

2dq
0

2dq21

dq
22

k*kt

ks

k̄22 0 0 0 0 2
2dq21

112dq

k* ~kt22!

ks
21

wq 2 2
1

dq
2

2

dq~2dq11!

4k*

ks

Fq̄
pc 0 0 0 0 0

k*L2f̃q
(2)

tp*nks

k t 312dq

ks 116dq14dq
2

k f 2(11dq)2

maxH 1,
ks

k t
J <k* <

2ks

k f

MR1 MR2

k* 2ks

k f

1
15@151(1514A3)dq2(4A323)dq

2#
1)

u

di-
l t
ul
ille
w

ns
s

s

r

k* ~dq!511

1514A3

15
dq2

4A323

15
dq

2 , ~56!

based on the following heuristic: the functionk* (dq) is qua-
dratic in dq , increasing, and goes through the points (0,
(d0,3/2), and (1,11/5).

F. Summary

Table II and the following results summarize the previo
sections.

~1! The linear LB equation with the bounce-back con
tion gives an exact Couette flow if the planes are paralle
a symmetry plane of the lattice and cut the nonperpendic
links in their middle. The same result applies for Poiseu
flows if L2 is equal to some particular values: 1/4 if the flo
is along a main axis.

~2! The linear LB equation with the boundary conditio
in Table II, except the bounce-back one, gives the exact
lution for any inclined Couette flow.

~3! The linear LB equation with the multireflections give
the exact solution for any inclined Poiseuille flow.
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~4! Linear interpolations~24! and ~25! are second-orde
accurate for general flows.

~5! Multireflections with postcorrection~46! are third-
order kinetic accurate for general flows.

IV. MOMENTUM TRANSFER ON THE BOUNDARY

A. Classical definition

Let us define the momentum transportMW (c) on the bound-
ary in the classical way~see Ref.@14,24#! as

MW (c)5 (
qPC

~ f̃ q~rWb!cWq2 f q̄~rWb!cW q̄!5 (
qPC

@ f̃ q~rWb!1 f q̄~rWb!#cWq ,

~57!

where the sum goes through all the cut linksqPC for all the
boundary nodesrWb . Let us denote

Mq~rW !5 f̃ q~rW !1 f q̄~rW !, ~58!

the sum of Eqs.~A1! and ~A2! gives
4-9
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Mq~rW !5tp* S 2P1
3 j q

22 j 2

r̃
1FqD 1~22ln! f q

(1)2l2f q
(2) .

~59!

Using Eqs.~27! and~28! and the projected stationary Navie
Stokes equation~49!, it comes

Mq~rW !5tp* S 2P1
3 j q

22 j 2

r̃
26n]qj q1]qP

1]q

3 j q
22 j 2

2r̃
23n]qqj qD

5Mq
(b)~rW1 1

2 cWq!, ~60!

whereMq
(b)(rW) is defined as

Mq
(b)~rW !52tp* S P1

3 j q
22 j 2

2r̃
23n]qj qD , ~61!

the right hand side term being taken atrW.
If the pressure, nonlinear terms, and momentum der

tives are constant for allrWb1cWq/2, they can be factored in Eq
~57! to give

MW (c)5S P2
j 2

2r̃
D (

qPC
2tp* cWq1S j a j b

2r̃
2n]b j aD

3 (
qPC

6tp* ciacibcWq . ~62!

For a plane surface going through the pointsA00, A10
5A001( l x,0,l z), and A015A001(0,my ,mz), where l x , l z ,
my , andmz are integers, it can be shown that

(
qPCS

2tp* cWq5ASnW ,

(
qPCS

6tp* ciacibcig5AS~nadbg1nbdag1ngdab!, ~63!

wherenW is the normal to the surface directed outwards,AS is
the area of the plane surfaceS limited by the closed path
(A00,A10,A11,A01) @with A115A001( l x ,my ,l z1mz)], and
CS is the set of links cut byS. It follows ~using¹W •W50) that
MW (c) restricted toS is given by the classical formula fo
incompressible flows@41#

MW S
(c)5ASS PnW 1

j nW

r̃
2n~]nW1¹W j n!D , ~64!

where j n5W•nW and]n is the derivative along the normal t
the surface.
06661
-

When the external force is constant and the flow is s
tionary, it follows from the momentum conservation that

MW (c)5FW Vl , ~65!

whereVl is the number of nodes where the force additi
tp* cW i•FW is applied in Eq.~2!. Consequently,MW (c) is indepen-

dent of the solution when an external forceFW is used.

B. Modified definition

Let us now give a modified definition of the momentu
transport on the boundary

MW (n)5 (
qPC

Mq
(b)~rWb1dqcWq!cWq , ~66!

whereMq
(b)(rWb1dqcWq) can be computed as

Mq
(b)~rWb1dqcWq!5~ 1

2 1dq!Mq~rWb!1~ 1
2 2dq!Mq~rWb2cWq!.

~67!

Indeed relation~67! comes from the following property o
any functionf (x):

f ~x1d!' 1
2 @~112d! f ~x1 1

2 !1~122d! f ~x2 1
2 !#.

~68!

With the modified definition the momentum exchange
computed on the surface with a second-order accuracy
not in the middle of the cut links as for the classical defi
tion. The difference between the first and second definiti
is

MW (n)2MW (c)5(
q

~dq2 1
2 !]qMq

(b)~rWb!cWq . ~69!

Note that the modified definition does not verify Eq.~65!,
in a way similar to the nonconservation of mass by the
terpolation and multireflection schemes~see Appendix B for
examples!.

V. NUMERICAL RESULTS FOR STATIC BOUNDARIES

A. Stokes flow

1. Numerical setup

In order to test accuracy of the different boundary con
tions, we compare first the results with the quasianalyti
solutions of the stationary Stokes equation~12!. At a macro-
scopiclevel with respect to the level of the Stokes equatio
the flow of a single fluid in a porous medium is well d
scribed by Darcy’s law which relates the flow rate of t
fluid QW to the applied forcing across the medium in a line
way:
4-10



n

T
o

m

d
d

nt
ca

.

e

.,
the

rrors
on,
the
ith
so-

ints

lue

l-
-
ity
of
ith

me-
es
dy

i-
B
ter-
he
heir

q.
r
ny

ro-
-off
ns
ey
tual
tly
in
n
s
-

so-

st,
, to
of

lue
us

MULTIREFLECTION BOUNDARY CONDITIONS FOR . . . PHYSICAL REVIEW E68, 066614 ~2003!
QW 5
1

n
K~2¹W P1FW̄ !, ~70!

whereK is the permeability tensor of the porous medium a

¹W P
¯

is the mean value of the pressure gradient across it.
flow rateQW is usually computed as a volume mean value
the momentumW:

QW 5
1

Vs
(

rW
W~rW !. ~71!

Here, the summation goes through all the points in the co
putational domain andVs is equal to the volume of the
sample. It can be shown that when the momentum is re
fined as in relation~9!, QW coincides with the mean centere
population mass fluxFW :

FW 5
1

Vs
(

rW
FW p~rW !, ~72!

Fa
p~rW !5 1

2 (
q51

bm

@ f̃ i~rW !1 f i~rW !#cia . ~73!

One should keep in mind, however, that expressions~71! and
~72! represent crude integration rules which do not take i
account the exact boundary position. The permeability
also be derived from the dragFW d on the solid

FW d52~¹W P2FW̄ !. ~74!

and approximated by the momentum transportMW (c) or MW (n)

on the boundary as defined in Eq.~57! or Eq. ~66!.

When the fluid is forced in a given directiona, and¹W P̄
50 ~e.g., periodic porous media!, the diagonal terms of the
permeability tensorK can be computed as

kaa5
nQa

F ā

, ¹W P
¯

50. ~75!

In the following sections the main flow is in thez direc-
tion and the permeabilitykzz is simply denotedk. For the
simulations with an external force~Secs. V A 4, V A 5, and
V B! only the permeabilityk in periodic samples is given
For the simulations without external force~Sec. V A 6! the
results are given for both theQW as defined in Eq.~71! and the
drag forceMW (c) as defined in Eq.~57!. The relative error for
any scalar LB variablesLB with respect to its reference valu
sa is computed as

Eh
(r)~sLB!5

sLB

sa
21, ~76!
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where the subscripth corresponds to the grid spacing, i.e
the inverse of the number of grid points. Because of
integration errors inherent to relations~71!, ~72!, and ~57!,
these global measurements are affected not only by the e
coming from the LB method and the boundary discretizati
but also by these integration errors. We also compare
solutions obtained for the velocity or pressure fields w
their reference solutions. The difference between the LB
lution for sLB5$uy ,uz ,P% and the quasianalytical solutionsa
for the same field is computed inL2 norm:

E(2)~sLB!5A( ~sLB2sa!
2/( sa

2, ~77!

where the sums are taken either over all the boundary po
~‘‘b’’ subscripts! or over the fluid points on the whole grid.

Let us note once more that the simulations at fixed va
L2 guarantee the linearity of the the LB Stokes solution~11!

with respect toFW /n for the bounce-back reflection and mu
tireflection with postcorrection~51!. For these boundary con
ditions the results are given for one value of the viscos
only. With other boundary conditions, the exact position
boundary at second and/or higher orders still changes w
the viscosity, leading to abnormal dependency of the per
ability on the viscosity. The corresponding error reduc
when n→0, but the computation time to reach the stea
state increases then accordingly.

2. Couette and Poiseuille flows

As was said in Secs. III C and III D, Couette and Po
seuille flows must lead to exact solutions for the linear L
equation. For the bounce back and linear and quadratic in
polations, this is possible only when the flow is along t
symmetry axes of the lattice and the walls are located at t
effective place@set for Poiseuille flows by the values ofln

andl2 , see Eq.~40!, or L2 for the bounce-back rule, see E
~42!#. For the multireflections given in Table II this is true fo
any inclination of the flows with respect to the axes and a
value ofln andl2.

For these flows the differences between the analytical p
files and the numerical ones are only due to the round
errors. However, it is worth noting that these exact solutio
require a strict cancellation of the different error terms. Th
are therefore extremely sensitive to the details of the ac
algorithm. For instance, the forcing term must be exac
implemented as in Eq.~2! and the momentum redefined as
Eq. ~9! with I f521/2 ~both conditions are not satisfied i
the algorithm of Ref.@14#!. In addition, the nonlinear term
in the equilibrium distribution give nonzero third- and forth
order derivatives for Poiseuille flows, breaking the exact
lution obtained for the linear distribution.

In our opinion, the merit of these academic flows is, fir
to illustrate our approach in a simple way, and second
provide simple tests of the computer implementation
boundary conditions.

3. Flow around random fibers

In order to illustrate the benefit of using a constant va
of L2 in a nontrivial case, we use models of periodic fibro
4-11
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
material shown in Figs. 2~a!–2~c!. The fiber web consists o
overlapping cylinders@a single fiber for Fig. 2~a!# of radius
equal to 2 lattice units~l.u.!. The distribution of the cylinder
axes is obtained from a Poisson line process@31#. The mea-
surements are performed with aD3Q15 model having one
eigenvalueln for all the even moments and one for all th
odd moments (l2); the forcing is F5231026 and the
boundary condition is the bounce-back rule. We give in Ta
III first the permeabilitykxx obtained for the three sample
with n51/6 andL251/4, then the relative difference in pe
meability for the caseL251/4 and for the BGK case (l2
5ln), with krel(ln) given by

krel~ln!5
kxx~ln!2kxx~1!

kxx~1!
, ~78!

FIG. 2. Fiber materials, from left to right and top to bottom:~a!
porosityf'0.965 in a 203 box, ~b! porosityf'0.973 in a 503 box,
~c! porosityf'0.941 in a 903 box.
06661
e

wherekxx(1) is the value ofkxx for ln51 ~the choiceln

51 being rather arbitrary!.
First we do not want to let the reader believe that

measure the permeability of the samples with an accurac
few 10213. We only claim that the viscosity can change by
factor 60 without changing the measured permeabilities
more than63310212 when using a constant value ofL2.
This is to be contrasted with the BGK case where the p
meability is rapidly increasing with the viscosity~by more
than a factor 5! as expected form the results for Poiseui
flows. This behavior of the BGK model is in a total contr
diction with the physics of Stokes flows.

Finally the results have been obtained for a converge
criteria based on the relative difference between the m
mum and the minimum mass flux, the computation end
for a relative difference less than 1026. Although this criteria
is quite stringent, it probably accounts for the 10212 error in
the permeability measurements~this error is a few orders o
magnitude larger than the numerical round-off ones!.

4. Cubic array of spheres

The solution for a viscous flow past a cubic array
spheres@32,33# shows that the drag forceFd on the sphere,
exerted by the fluid moving with the average speedŪ, de-
pends on the relative volume solid concentrationc as

Fd5
6pmaŪ

k* ~x!
, k5

Vs

6pa
k* , x5~c/cmax!

1/3, ~79!

wherea is the sphere radius andcmax5p/6 is the maximal
concentration. The functionk* (x), inverse of the nondimen
sional drag, is tabulated in Table 4.9 of Ref.@34#. For a dense
array, we use their results~b!.

We computed the permeability from relations~71! and
~75! and tested the boundary conditions~23!–~25!, and~51!.
The external force isF5231025. The results in Tables IV
and V show the relative permeability error with respect to
reference value computed from Eq.~79! and Ref.@34#. The
permeabilities in Table IV were obtained fort52, but are
independent of the viscosity. Since this is no longer the c
or

TABLE III. The third line gives the permeability of the three fiber samples shown in Figs. 2~a! to 2~c! for

n51/6. The bottom of the table gives the relative permeability with respect to the previous values fL2

51/4 and the BGK model.

203, f'0.965 503, f'0.973 903, f'0.941
n ln kxx kxx kxx

1/6 1 34.0659875 42.249358 26.150806
krel krel krel

L251/4 BGK L251/4 BGK L251/4 BGK
(10212) (10212) (10212)

1/24 8/5 0.1 20.077 0.1 20.094 0.1 20.083
1/6 1 0 0.016 0 0.021 0 0.018
1/2 1/2 0.5 0.311 1.1 0.356
7/6 1/4 1.3 1.243 20.3 1.123
5/2 1/8 22.8 4.699 0.3 2.946 20.1 2.236
4-12
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MULTIREFLECTION BOUNDARY CONDITIONS FOR . . . PHYSICAL REVIEW E68, 066614 ~2003!
for the linear interpolations~24! and~25!, the corresponding
results are given fort52 and 0.6 in Table V. The table
include the number of time stepsn required to reach a
change ink less than 1026 between 103 time steps. Note tha
for the linear interpolations, decreasing the viscosity by
factor 15 increases both the accuracy and the converg
time by almost the same factor.

Note that for the two most dense arrays, situations wh
some boundary nodes have only one fluid neighbor app
Despite that, higher accuracy is maintained with the mult
flection with postcorrection for all solid fractions.

Although the precision of the linear interpolations in th
test is quite satisfactory for small viscosities, it deteriora
when the gap between the spheres approaches 1–2 la
units. Besides that, the computational time is then 10–
times higher than for multireflection with postcorrection.

5. Square array of cylinders

For a periodic square array of cylinders, the force exer
on the cylinders per unit length is~see Refs.@32,34,35#!

TABLE IV. Comparison of the relative errors on permeabili
for a cubic array of spheres and the bounce-back and multireflec
boundary conditions in a 253 box.

Bounce back Multireflection
x k* (x) @34# E(r)(k) (%) n/100 E(r)(k) (%) n/100

0.5 0.35186 21.02 21 20.42 22
0.6 0.25165 22.96 13 20.46 15
0.7 0.16655 22.12 9 20.44 10
0.85 0.07330 1.50 5 20.35 19
0.90 0.05220 24.38 4 20.67 4
0.95 0.03580 24.28 3 20.56 5
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l
5

4pmŪ

k* ~c!
, k5

Vs

4p l
k* , ~80!

where l is the cylinder length andc is the relative solid
square fraction (cmax5p/4). The functionk* (c) is tabulated
in Table VI ~from Table 4.12 of Ref.@34#!.

Simulations are similar as above; they are termina
when a change ink is less than 10210 between 103 time
steps. All computations are done witht50.875, l2521
@corresponding to Eq.~43!#. The results with the boundar
conditions in forms~23!–~25! and ~51! are shown in Tables
VI for periodic cells 332 and 992.

The results with the coefficients~51! but without the post-
correction~46! and with the coefficients~6! from Ref. @14#
are shown in Table VII. We would like to stress that they a
similar to the results obtained with the linear interpolation
which is not totally surprising since they are all second-or
kinetic accurate.

on
TABLE V. Comparison of the relative errors on permeability f

a cubic array of spheres and the linear boundary conditions fot
52 and 0.6 in a 253 box.

t52 t50.6
x E(r)(k) (%) n/100 E(r)(k) (%) n/100

0.5 4.28 20 0.88 330
0.6 3.38 14 0.32 230
0.7 3.61 9 0.38 150
0.85 7.73 5 1.68 80
0.90 8.67 4 0.65 70
0.95 10.27 3 1.08 60
d the
TABLE VI. Comparison of the relative errors on permeability for a square array of cylinders an
bounce-back, linear, and full multireflection boundary conditions on 332 and 992 grids; r is the cylinder
radius.

Bounce back Linear Multireflection
c r k* (c) @34# krel (%) krel (%) krel (%)

332 grid
0.2 8.326 24.49 20.04 20.35
0.3 10.198 22.59 0.04 20.35
0.4 11.775 20.48 1.76 0.05
0.5 13.165 217.51 21.36 20.99
0.6 14.422 215.56 0.70 20.45
0.7 15.577 26.88 22.49 7.50

992 grid
0.2 24.979 2.43931021 1.08 0.15 20.01
0.3 30.593 1.22131021 20.73 0.09 0.03
0.4 35.326 5.76731022 21.43 0.04 20.02
0.5 39.495 2.36031022 22.83 0.05 20.03
0.6 43.265 7.12831023 25.27 0.02 20.11
0.7 46.732 9.29531024 0.79 3.79 0.31
0.75 48.372 9.95031025 227.18 6.08 0.79
4-13
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
6. Cylinder between moving flat walls

The flow configuration is similar to Ref.@36#. The box is
periodic in thex and z directions. Its dimension isl 3W
3L. The axis of the cylinder is along thex axis and cuts the
x50 plane at (y0 ,z0) referred below as the center of th
cylinder; the flat boundaries are found aty56H and are
moving in thez direction with velocity 2uW w . This setup
simulates a periodic flow in thez direction past an array o
cylinders at rest between moving parallel planes. Multip
solution to this problem is discussed in Appendix
Pressure/velocity/stream function solution is compared w
the quasianalytical solution. The lattice Boltzmann resu
are obtained with the same parameters as for a periodic a
of cylinders. The distancedq between the flat boundaries an
their boundary nodes is put equal to 0.5.

The relative errors of the force and seepage velocity
given in Table VIII. The errors are below 10%; even for t
bounce-back condition, most of them are below 1%, es
cially for the linear interpolation and the multireflection co
ditions. As for a periodic array of cylinders, it happens first
the concentration 0.6 that a boundary point lacks one poin
perform multireflection in a full form. At the concentratio
0.7, in addition, some boundary cells are intersected by b
boundaries~flat wall and the cylinder!. We have found that
coefficients~56! are more stable in this situation than coe
ficients~51!. Since the accuracy of coefficients~56! depends
on the viscosity, we have chosen here to use a bounce-
condition on a flat wall combined with multireflection on th
cylinder for c50.7. In this way, the multireflection/bounce
back solution is still controlled byL2, but its errors in flow

TABLE VII. Comparison of the relative errors on permeabili
for a square array of cylinders and the multireflection without
postcorrection and the quadratic interpolation boundary condit
on a 332 grid.

Multireflection without Interpolation~6! from Ref. @14#

c correction,E(r)(k) (%) E(r)(k) (%)

0.2 0.68 0.86
0.3 0.51 0.92
0.4 2.16 2.09
0.5 1.41 2.97
0.6 5.28 5.47
0.7 35.93 28.63
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direction ~force, seepage velocity, anduz) become larger
than the error of linear interpolation. Finally, forc50.7, r
515.57 here and in the previous test, the bounce-back c
dition works surprisingly well. Indeed, when the curvature
the cylinder is small, the flow in a gap is close to Poiseu
flow ~in the previous test! and to Couette flow~in the current
test!. Moreover, here the cylinder boundary is shifted at a
proximatelydq51/2 from the last boundary nodesy5616
~since r 515.57 and cylinder centery050). While applied
with L251/4, bounce back and linear interpolation give th
quite good results.

The errors between the LB results and the reference s
tion at the boundary points as a function of their angu
position ~measured counterclockwise in radian from thez
axis! for c50.4 are plotted in Fig. 3 for the pressure a
velocity fields. The streamlines are plotted in Fig. 4 forc
50.4 ~top row! andc50.5 ~bottom row!. The integration of
the velocity fields is done in a similar way for all LB tech
niques and quasianalytical solution. Table IX summarizes
results based on norm~77! of the error for the pressure an
the z andy components of the momentum.

All the simulations reported above have been done i
fully symmetric numerical setup. The LB lift force is the
equal to zero and no total mass violation happens with
boundary interpolations. When the center of the sphe
cylinder is shifted from the cell center along the flow dire
tion, these properties do not hold any more. As an exam
let us move the cylinder center from the symmetric posit
on the node (y0 ,z0)5(18,15) to a final position (y0 ,z0)
5(18,15.48) close to the middle of a link, with a step incr
ment (dy ,dz)5(0,0.04). The box size is 332 and the cylin-
der radius isR512 (c'0.42). Figure 5 plots the corre
sponding mass loss per time step for the linear interpola
and multireflection with postcorrection~there is no mass los
for the bounce-back condition!. We see that multireflection
with postcorrection has on average a smaller mass loss
the linear interpolation. When mass loss occurs there is
longer any strictly stationary state. However, we have fou
in our simulations that the momentum field still reaches
steady state~within a stopping criterion of a relative chang
per time step smaller than 1027!. Hereafter we shall use
‘‘stationary regime’’ for such situations.

Figure 6 shows the relative error in drag force, using
value for the symmetric case (y0 ,z0)5(18,15) as reference
The multireflection with postcorrection is much more acc

e
s

ection

TABLE VIII. Relative error~in %! of the force~left columns! and seepage velocity~right columns! for a

square array of cylinders between moving flat walls and the bounce-back, linear, and full multirefl
boundary conditions on a 332 grid andt50.875.

c Bounce back Linear Multireflection

0.2 2.14 21.91 7.231022 20.12 2.631022 20.11
0.3 1.33 21.12 5.631022 20.17 4.831022 20.21
0.4 20.43 0.21 20.71 0.60 20.19 8.431023

0.5 8.22 27.91 0.59 20.93 8.331022 20.61
0.6 6.14 26.67 20.13 20.15 20.69 0.16
0.7 0.95 21.68 1.10 21.76 5.56 6.39
4-14
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FIG. 3. Error between the LB results and the quasianalytical solution at the boundary points as a function of their angular po~in
radian! for c50.4; ~a! bounce back,~b! linear interpolation,~c! multireflection. Left to right: pressure rescaled by its max value,y- and
z-velocity components rescaled byuw . The data correspond to streamlines in Fig. 4.
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rate than bounce back, and the accuracy for the linear in
polation is usually found between bounce back and mult
flection. Note that by definition the error for (y0 ,z0)
5(18,15) is zero and far away from the values displayed
Fig. 6: respectively, 8%, 2%, and 0.15% for bounce ba
linear interpolation, and multireflection. Such large valu
are surprisinga priori, but we think their explanation is th
following. When (y0 ,z0)5(18,15), in our simulations the
points (6,15) and (30,15) are considered as solid point
the cylinder; the corresponding links in thez direction are
then cut by the boundary@for instance (30,15) to (30,16)]
When the cylinder center is shifted by a nonzero multiple
(dy ,dz), these nodes become fluid ones~boundary nodes!.
The links that were cut in the symmetric case now conn
two fluid nodes and are considered as fluid links, althou
some of them are tangent to the cylinder@for instance
(30,15) to (30,16)]. In our opinion, Fig. 6 illustrates th
order of magnitude of the errors caused by a too sim
treatment of the links tangent to the boundary surface
should be noted that multireflection with postcorrection
06661
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duces considerably the error~an order of magnitude com
pared to the linear interpolation!. A better treatment of these
links is left for future work.

7. Summary for Stokes flows

When the exact solution of the studied partial different
equations is not known, a classical estimator of the orderp of
the numerical scheme is given by the Richardson formul

p5
1

ln n
lnS fn2h2fnh

fnh2fh
D , ~81!

wheref is any measured quantity on grids of mesh sizesh,
nh, and n2h @see Eq.~3.52! page 59 of Ref.@37# for n
52]. When the exact solution is known to beF, the same
estimate can be computed using only two mesh sizes ins
of three, by replacingfnh andfh by F in the numerator and
the denominator of the second logarithmic term. In our
tempt to extract some convergence order, it turns out that
4-15
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FIG. 4. Streamlines for the flow around a cylinder between flat walls forc50.4 ~top row! and c50.5 ~bottom row!. Left to right:
bounce-back method, linear interpolation, and multireflection~solid lines! compared to the quasianalytical solution~dashed lines!.
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corresponding differences may become negative and
have preferred to use a slightly modified convergence e
mator:

Knh,h
2 5n22

Enh
(r)~k!

Eh
(r)~k!

. ~82!

If the accuracy order isp, the value ofKnh,h
2 should benp22,

and a second-order accuracy should correspond toKnh,h
2

51.
This convergence estimatorKnh,h

2 (k) for the permeability
k of the square array of cylinders~Sec. V A 5! is given in
Table X for n53. The convergence factors are rather d
perse and their values do not reflect the convergence be
ior when the coarse grid errors change their sign and/or w
they are very close to zero. Note that including the data
Table XI ~with n51.5 or 2) does not help.

These results show that the condition stated on page 6
Ref. @37# is not valid: ‘‘The order of convergence estimate
using Eq.~3.52! is valid only when the convergence is mon
tonic.’’ In our opinion the best support for a nonmonoton
06661
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convergence is given by Fig. 6 of Ref.@14#. It shows that the
observed dispersion of the global errors is very large, e
for a very extensive numerical test. It seems to us that lin
resolutions at least an order of magnitude smaller than o
~three orders more computer time! would be required in or-
der to obtain unquestionable convergence factors. It is e
plausible that, due to the effects shown in Fig. 6, the n
sentence of Ref.@14#—‘‘Monotonic convergence can be ex
pected only on sufficient fine grids.’’—is not even true f
our problem and that the convergence will never be mo
tonic. Then, measuring a convergence order in a reliable
would require a more subtle analysis of the data.

Despite the difficulties to in demonstrating obvious co
vergence factors, we hope to have shown in a convinc
way that the results given in the tables and figures of
previous sections share the following trends.

~1! The errors are significantly smaller for the bulk tha
for the boundary points, which supports our assumption t
the errors are mostly due to the boundary conditions ra
than to the approximation of the Stokes equation by the
tice Boltzmann scheme itself.

~2! The errors are significantly larger for the pressure a
4-16
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MULTIREFLECTION BOUNDARY CONDITIONS FOR . . . PHYSICAL REVIEW E68, 066614 ~2003!
they component of the momentum than for thez component
of the momentum.

~3! Pressure/velocity fluctuations obtained with t
bounce back rule near the cylinder boundary are simila
those described in Ref.@10# for inclined Poiseuille flow. The
oscillations are considerably smoothed by linear interpo
tions and still more by the multireflection.

~4! The linear interpolation improves the overall accura
by almost an order of magnitude compared to the bou

TABLE IX. Relative error~77! of the pressure and the momen
in the z and y directions~in %! for the parameters given in Tabl
VIII. Left columns, boundary nodes; right columns, bulk.

c Bounce back Linear Multireflection

Pressure
0.2 13.5 8.6 4.9 3.6 4.2 3.4
0.3 21.2 12.1 6.1 4.0 3.6 3.2
0.4 20.4 15.1 6.5 6.1 3.9 3.9
0.5 19.0 16.5 2.5 2.5 3.5 3.5
0.6 7.5 6.2 6.1 5.7 7.1 6.8
0.7 32.4 28.7 32.0 28.3 30.2 26.7

Momentum in thez direction

0.2 19.8 1.86 1.15 0.09 0.49 0.04
0.3 17.2 1.47 1.38 0.15 0.55 0.05
0.4 17.5 1.59 5.82 0.75 1.39 0.20
0.5 24.7 6.59 2.85 0.59 1.02 0.24
0.6 16.1 5.17 3.18 1.20 2.24 1.07
0.7 9.8 5.32 8.86 4.64 13.12 6.67

Momentum in they direction

0.2 20.3 10.8 5.0 1.6 2.4 0.9
0.3 47.7 21.9 5.2 2.3 2.2 0.9
0.4 34.6 27.4 8.9 7.0 3.2 2.2
0.5 39.0 26.1 7.0 3.5 3.9 2.3
0.6 30.6 15.9 9.8 5.2 6.6 4.4
0.7 26.1 14.3 17.5 8.9 13.9 7.1
06661
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back condition, while an additional factor 2 is achieved wh
the full the multireflection condition is available, i.e., whe
c<0.6 for which the channel width is larger than 3 (c,0.6
for the 332 case!.

~5! Although the results obtained with linear interpolatio
can be further improved by decreasing the viscosity, the c
responding computational time is increased quite sign
cantly.

~6! The bounce-back condition provides very satisfacto
results for tangential velocity when the flow is dominated
the flow in very narrow straight channels andL2 is fixed
close to the value 1/4~which gives the exact Poiseuille so
lution!.

B. Navier-Stokes flow in a square array of cylinders

The flow configuration here is the same as in Sec. V A
Navier-Stokes equilibrium~6! is applied in its incompress
ible variant @22,23#. Solution for a 662 box is computed at
solid fractionscP$0.2,0.6% for Re numbers in the rang
@0,180#. This interval has been chosen for comparison w
the results computed using a stationary finite element~FE!
method in Ref.@38# and with a nonstationary FE method
Ref. @39#. Note that these two sets of results differ signi
cantly for c50.5 and c50.6 ~see Fig. 8!. According to
Ghaddar@39#, these differences may come from ‘‘a lack o
resolution due possibly to large iteration or/and discretizat

TABLE X. Convergence estimatorKnh,h
2 for the data in

Table VI.

c Bounce back Linear Multireflection

0.2 20.46 20.03 2.65
0.3 0.40 0.05 21.48
0.4 0.04 4.82 20.32
0.5 0.69 23.21 3.60
0.6 0.33 3.21 0.46
0.7 20.97 0.66 2.65
multire-
FIG. 5. Mass loss per time step at the stationary regime corresponds to the previous picture. Left: linear interpolation. Right:
flection with postcorrection.
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TABLE XI. Relative permeability error~in %) for the Stokes regime with respect to the reference va
~80!.

c Finite element@38# Bounce back Linear Multireflection

0.2 2.54 21.63 5.531022 26.531022

0.3 0.53 0.78 0.51 2.831022

0.4 20.64 24.86 0.13 29.231022

0.5 22.54 21.1 20.95 28.931023

0.6 28.36 26.9 0.55 22.131021
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errors’’ in Ref. @38#. We have also observed a quite stran
feature in the data of their Table I: for any Reynolds num
the permeabilities forc50.5 are exactly those forc50.6
divided by 0.291~up to the table accuracy!. The LB method
with bounce back reflection is also used to simulate this fl
in Ref. @40#.

Table XI gives for this grid size the relative errorE(r)(k)
of the Stokes permeabilitykS with respect to the referenc
values computed from Eq.~80! and Ref.@34#. The Stokes
solution is obtained withL251/4 and solution~43! at t
51.

The dimensionless permeabilities are scaled below by
quasianalytical solution@35# in the Stokes regime, except th
results of Ghaddar which are scaled by its own Stokes
ues, being believed ‘‘virtually exact’’~see Table V in Ref.
@39#!. They are plotted in Fig. 7 forc50.3 and 0.5. For these
fractions, bounce-back solution at the Stokes regime ha
relatively small error~see in Table XI!. We find then that the
Navier-Stokes results are also rather close together for
three boundary techniques. Forc50.4, the bounce back re
sults differ significantly from those obtained with the line
interpolations and multireflections. Figures 8 show for ea
method the effect of scaling the apparent permeability eit
by the quasianalytical solution~left curve! or by its own
value obtained at Re50 ~right curve!. When rescaled by its
own permeabilitykS , the bounce back results approach tho
obtained with the boundary interpolations. This comparis
shows that most of the bounce back error is coming from
5% error in the Stokes regime.

For the values oftP@0.53,0.56# used here, the globa
measurements obtained with the linear interpolations
multireflections in nonlinear regimes are rather close
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gether. They are also very close to Ghaddar’s solution.
fortunately, we have not yet found another reference to co
pare with more accurately for nonlinear flows.

Multireflection provides in a regular manner higher R
numbers than the linear interpolations. Similarly, boun
back solution usually gives an underestimated Re numb
This is probably related to the fact that the effective rad
~square fraction! obtained with bounce back is higher tha
the expected value. We want also to stress that multirefl
tions with coefficients~56! converge much faster to a station
ary state than solution~51!. Whereas in the previous tes
there was no total mass violation due to the symmetry,
current tests we observe some loss of mass with respe
the initial distribution. For instance, the relative mass lo
per time step at a stationary regime forc50.5, Re'23 is
431027 by linear interpolation and 2.331027 by multire-
flection. At Re'174, these values are 4.731026 and 6
31027. These data show that the mass violation increa
with Re but its absolute values and rates are smaller for
multireflections. Similar results are obtained in other test

Table XVI in Appendix D gives the dimensionless appa
ent permeabilityk̄5k/kS values~right columns! versus Re
numbers~left columns! for the linear interpolations.

VI. MOVING BOUNDARIES

A. Algorithms

1. Definitions

In order to test the robustness of the linear interpolatio
~24! and~25! and multireflections~51! and~56! in situations
FIG. 6. Relative difference in drag with respect to symmetric cylinder position when its center is shifted along thez axis ~l.u.!. Left to
right: bounce back, linear interpolation, multireflection with postcorrection.
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FIG. 7. Dimensionless permeability values vs Re number atc50.3 ~left! andc50.5 ~right!. In both cases, the quasianalytical solutio
@35# in the Stokes regime is used to rescale the apparent permeability.
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where the distancedq varies in a natural way, we constru
moving boundary algorithms based on these boundary c
ditions.

The fluid points are defined as in Sec. III A and the oth
points are called‘‘solid.’’ It is then natural to divide the
corresponding solids into‘‘static’’ and ‘‘moving’’ ones, de-
pending on the time behavior of their limiting surfaces:
solid is said static if its limiting surface does not change
position on the lattice, and moving otherwise. The points
static and moving solids are respectively called static
moving solid points. Accordingly,at each time step t, the
boundary~fluid! points, defined as in Sec. III A, are als
divided into static and moving boundary points. The on
which currently have neighbors only in static solids a
calledstatic boundary pointsand are handled as described
Sec. III. The boundary points that have at least one neigh
in a moving solid, at link distancedq (0<dq,1), are called
moving boundary pointsand their treatment is described
the following sections. Fluid, moving solid, and bounda
06661
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points of both kinds can exchange their status. The only
striction here is on the velocity of the solid body which mu
be less than 1 l.u. per time step in any direction so that
fluid/solid points cannot exchange their status without st
ing at least one time step in the boundary sets.

Note that in our computer implementation the static so
points are actually not stored~allocated!, while we have
found simpler to store the moving ones in all the followin
algorithms.

2. Connections to other methods

Starting from any timet our main algorithm goes throug
the following substeps to get the new state at timet11:
collision, propagation, boundary conditions, analysis, adv
tion of the moving solids, and reconstruction of new flu
points. The first four steps are identical to those used in S
V. The solid advection corresponds to a sampling of the
sition of the moving solids at a timetad5t1D t

ad , with 0
FIG. 8. Dimensionless permeability values vs Re number forc50.4. Left: the permeability is scaled by the quasianalytical solution@35#
in the Stokes regime. Right: the permeability for each method is scaled by its own value in the Stokes regime.
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
<Dt
ad<1. As a result of this advection step some fluid poin

become solid and some solid points become fluid. The s
of these new boundary~fluid! points has to be supplied an
in the available literature this is done along two main line

Along the first one~see, for instance, Refs.@36,43#!,
called the LB in fluid technique in the sequel, the LB equ
tions ~1! and ~2! are applied only in fluid points. The diffi
culty of this approach is that all the populations in the n
boundary points have to be reconstructed. In Ref.@43#, the
equilibrium distribution with the mean density of the su
rounding fluid and the velocity of the solid body was used.
Ref. @36#, all the populations were interpolated from bu
with second-order schemes. In our implementation we try
stay as close as possible to the static LB algorithm. We
obtain all possible populations by the advection step~1!.
Then the links opposite to the new cut ones are reconstru
using relation~22! with some necessary interpolations d
cussed in the following section. Finally, the remaining pop
lations, called ‘‘tangential’’ below, are reconstructed expl
itly ~the second part of the following section!.

Along the second line~see, for instance Refs.@25,44#!,
called LB in solid in the sequel, the collision and propagat
steps are applied in all the fluid and moving solid poin
~though the populations are recomputed as an equilibrium
Ref. @44#! and the state of the new fluid points is automa
cally supplied by the value they had in the solid. In additi
the boundary conditions are applied on both~concave and
convex! sides of the solid boundary in Refs.@25,44#. In our
LB in solid implementation the collision and propagatio
steps are applied unchanged everywhere. In particular
propagation takes place from fluid points to the solid on
according to the evolution equation~1! which, in our opin-
ion, supplies the continuation of the solution from the fluid
the solid. When a solid point becomes a boundary fluid po
its populations along the links from fluid to solid are alrea
obtained from the advection step and the opposite cut li
are reconstructed exactly as in our LB in fluid algorith
above~we have noticed that using the value they had in
solid leads to larger fluctuations of the solution!. The other
~tangential! links are the only ones actually keeping the
value from the solid.

We compute the force according to Eq.~57! or Eq. ~65!
during the analysis step, before the points change theirs
tus from solid to fluid. This has to be contrasted with t
computation of the force contribution from new fluid/sol
points described in Refs.@43,44#. Note also that in both ou
moving methods, the boundary conditions are applied onl
the boundary fluid nodes.

Finally in the examples given in Sec. VI B, the dynam
of the solid objects does not depend on the computed for
i.e., their velocity is prescribed. Further tests are required
evaluate our moving algorithms~especially the LB in solid
one! when the solid dynamics depends on the fluid soluti

3. Details of the moving schemes

Similarities between the LB in fluid and LB in solid alg
rithms. The key point of our moving algorithm is the distinc
tion between the ‘‘tangential’’ and ‘‘nontangential’’ links in
the new fluid points. A linkq belongs to the set of tangentia
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links T(rWb), if rWb2cWq is also a new boundary fluid point o
when both neighborsrWb1cW q̄ and rWb1cWq are solid~i.e., rWb is
in a corner or a narrow channel!. Note thatT(rWb) always
contains the zero velocityc0

W . Otherwise, the link is a non
tangential link and belongs to the setT̄(rWb) @with
C(rWb),T̄(rWb)].

The treatment of the nontangential links is exactly t
same for the LB in fluid and LB in solid algorithms. Whe
rWb2cWq is a fluid point, we setf q(rWb ,t11) according to the
propagation step~1!:

f q~rWb ,t11!5 f̃ q~rWb2cWq ,t !. ~83!

WhenrWb1cWq belongs to a solid, we setf q̄(rWb ,t11) accord-
ing to the boundary rules. However, since the postcollis
populationf̃ q(rWb ,t) is not known at the new fluid point, on
cannot use directly the bounce-back, linear interpolation
multireflection boundary conditions. For the multireflectio
cases, one could bring the interpolation coefficientk1 to zero
with the help of transformations~48! without loss of kinetic
accuracy. However, the resulting coefficients are not alw
found in the ‘‘stability interval’’ @21;1#. In order to keep
similar algorithms for all the boundary techniques under c
sideration, we interpolatef̃ q(rWb ,t) from the bulk. For multi-
reflections, we have also to interpolate the second-order p
collision term l2 f̃ q

(2) @see Eq. ~46!#. The low-order
interpolations

f̃ q~rWb ,t !'2 f̃ q~rWb1cW q̄ ,t !2 f q~rWb1cW q̄ ,t !1O~e2!,

f̃ q
(2)~rWb ,t !' f̃ q

(2)~rWb1cW q̄ ,t !1O~e3!, ~84!

are used to keep a minimal number of the communicati
between the neighboring points. In a similar way, we setr̃ in
relations~6! and~20! equal to the arithmetical mean valuer̄,
computed from the neighbor valuesr(rWb1cW q̄),
q̄¹C(rWb)øT(rWb). In addition, for downwind linear interpo
lation and multireflection,f̃ q̄(rWb ,t) is set to f q̄(rWb2cWq ,t
11). Then the relations~24! or ~25! and multireflections
~51! or ~56! can be used to compute the populationsf q̄(rWb)
according to relation~22!.

Differences between the LB in fluid and LB in solid alg
rithms. The only difference between our two algorithms
the treatment of the tangential links. In the LB in solid alg
rithm, the tangential populations keep the values they h
obtained in the solid. In the LB in fluid algorithm they ar
computed assuming all the tangential links at equilibriu
Our heuristic assumes an incompressible flow for which
first-order ~27! and second-order~28! corrections off 0 are
equal to zero. In a similar way, the projection of the mome
tum derivatives~i.e., the first- and second-order correction!
on the other tangential links can be neglected, otherwise
connected points would not appear from the solid at the sa
time.
4-20
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TABLE XII. Comparison for a 13993201 box,t50.875, of linear interpolations (A), multireflections
(B), multireflections without correction (C), multireflections for the LB in solid algorithm (D).

A B C D

E(2)(p) (%) 2.16 0.81 2.4 5.31
E(2)(uz) (%) 4.40 2.20 5.4 2.52
E(2)(uy) (%) 1.81 0.05 0.16 0.05

Force at disk

StaticFy 20.024 20.024 20.024 20.024
StaticFz 0.62 0.62 0.62 0.62

E(r)(F̄y) (%) 5.731023 631024 1.631022 0

E(r)(F̄z) (%) 0.34 0.26 0.37 0.26

E(r)(Fy) (%) 4.531023 2.631023 331023 2.631023

E(r)(Fz) (%) 2.5 0.56 0.57 0.95
Force at flat

E(r)(F̄y) (%) 4.431023 731024 1.131023 0

E(r)(F̄z) (%) 0.29 0.08 3.631022 0.09

Mass loss
per period 2.931027 1.431028 3.231027 2.831027
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In order to compute the equilibrium in the new flu
points, one has to estimateW andr. A first-order approxima-
tion of the velocityuW ap(rWb ,t11) is obtained from the arith
metical mean of the linear interpolations between the kno
values of the velocityuW w(rWb1dqcWq ,t) at the boundary and
uW (rWb2cWq ,t) for all qPT̄(rWb) @the boundary velocity is use
if T̄(rWb) is empty#. Assuming then the equilibrium solutio
for the tangential links, the unknown density is derived fro
the linear equation:

rH 12 (
qPT

f q
eq~1,uW ap!J 5 (

q¹T
f q2 1

2 (
qPT

tp* cWq•FW . ~85!

We have found that relation~85! leads to slightly smaller
oscillations in the solution than the direct use of the appro
mate density value at equilibrium. Noting that the valu
uW (rWb2cWq ,t11) in the ‘‘old’’ fluid points are already known
during the reconstruction of the tangential links, their valu
could be used instead ofuW (rWb2cWq ,t). However, we have no
detected any further improvement of the accuracy with t
change.

B. Numerical results

1. Setup for moving boundary tests

In the first setup we simulate a periodic flow past a c
inder ~sphere! at rest, the velocity of flat~cylindrical! outer
boundary being2uW w . Hereafter refer to this setup as th
static solution~shortly ‘‘s’’ !. In static and linear regimes,
cylinder between flat walls is considered in Sec. V A 6. T
quasianalytical Stokes solution for a sphere traveling al
the cylinder axis is considered in Ref.@42#. Static LB solu-
tions are compared with it in Ref.@20#. In the second setup
06661
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an impulsively started cylinder~sphere! moves with velocity
uW w and the outer boundary is at rest. When the moving so
reaches the box boundaries, its position is adjusted by p
odicity. Hereafter we refer to this setup as the moving so
tion ~or simply ‘‘m’’ !.

As in Ref. @36#, we check for the Galilean invariance o
the method by comparing the results of the first and sec
setups when the solids move with a constant velocity and
position of their center of massrWc is given by

rWc~ tad!5rWc~D t
ad!1uW wt, t>0. ~86!

If the flows are Galilean invariant we expect to obtain t
velocity, pressure distributions, and forces as

uW (s)5uW (m)2uW w , P(s)5P(m), FW (s)5FW (m), ~87!

where P(s) and P(m) are the pressure distributions minu
some characteristic mean pressures. The forces are comp
independently, once on the outer boundary and once on
inner solid, using the standard definition~57! or the force
definition with boundary fitting~66!. Since no external force
is applied, the sum of the forces on the internal and exte
boundaries is expected to be zero for the stationary soluti
In order to check relations~87!, we measure the values of th
velocity and pressure when the moving solid is found at
same position as in thes case. We compare also them forces
and their averages during one period with theirs counter-
parts. Here the period is defined as the minimal numbe
time steps required to move the solid to the same position
to an integer displacement, with respect to the underly
lattice ~assuming a rational value foruW w).

When the solid body moves, the LB solution is no long
stationary in the lattice frame. Since the unsteady Sto
4-21
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
FIG. 9. Relative difference between the moving and static velocities at the boundary points as a function of their angular pos~in
radian! for a 13993201 box andt50.875. ‘‘Linear Method’’ and ‘‘Multireflection’’ correspond to linear interpolations and multireflectio
for the LB in fluid method; ‘‘LB in Solid’’ corresponds to multireflection for the LB in solid method.
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equation does not possess Galilean invariance, we simu
the Navier-Stokes equation inm ands cases~even for small
Re numbers!. In the following sections our attention will b
mostly focused on the LB in fluid algorithm and compariso
with the LB in solid one will be done for the multireflectio
case only.

2. Impulsively started cylinder in a channel

We consider a 13993201 channel, periodic in thex and
z directions. A cylinder, of radiusR512 and axis along thex
direction, is moving along thez axis with a velocityuw5
20.04. The cylinder starts att50 from the point (y,z)
5(53.5,29.65) and the time shiftD t

ad50.5.
Case Re57. A stationary static solution is obtained fo

t50.875. The corresponding moving solution is compa
with the static one at t5150 743 in point (yc ,zc)
5(53.5,29.99), when the cylinder finishes its 30th t
through the channel. Table XII shows the relative error e
mations~77! between static and moving solutions for pre
06661
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sure and velocity. Figures 9 and 10 show velocity and pr
sure error distributions at boundary points around
cylinder as a function of their angular position~in radian!.
Linear interpolations lead to larger difference betweens and
m solutions. In the case of multireflection, the algorithm
with and without internal fluid give very close results exce
for the points that have just changed their status from solid
liquid. For the LB in solid algorithm and (yc ,zc)
5(53.5,29.99), such points happen at the rear of the cy
der. The pressure in these points differs strongly from
bulk value @see Fig. 10, LB in solid~1!# and contributes
mainly to the pressure error. When no new point appears,
pressure fluctuations are twice smaller@see Fig. 10, LB in
solid ~2!# and the correspondingE(2)(p) decreases from 5%
to 3%. The comparison of the columnsB andD in Table XII
confirms that the reconstruction of the tangential populati
leads to smoother bulk solutions than its ‘‘in solid’’ counte
part.

Table XII shows also the values of the forces in the sta
regime, the force on the flat wall being exactly the oppos
FIG. 10. Relative pressure error corresponding to Fig. 9.
4-22
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FIG. 11. Drag and lift forces at disk, computed from Eq.~57! ~upper row! and Eq.~66! ~lower row! are plotted during one period.
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of the force on the disk. The relative differences~76! be-
tween the static and moving forces@E(r)(Fy) and E(r)(Fz)]
and the difference between thes force at (yc ,zc) and them
force averaged over one period~here 25 time steps!

@E(r)(F̄y) andE(r)(F̄z)] are also given. This last compariso
is justified if the force changes weakly in the static regim
compared with the moving one when the cylinder cen
shifts within one lattice unit. This is the case here as dem
strated in Fig. 11 where the lift and drag distributions duri
one period are shown for the moving case~for comparison
the static solution is also given for some cylinder position!.
The upper and lower rows correspond, respectively, to
force definitions~57! and ~66!. In the static case, as for th
Stokes results of Sec. V A 5, force~57! fluctuations are big-
ger for the linear interpolations than for the multireflection
In the moving case, the oscillations of both methods
similar for the drag. For the lift, they are stronger for t
linear interpolations than with the multireflections. Als
whereas the multireflection solution fluctuates around its c
responding static value, the linear interpolation solution
viates from it.

Case Re5200. When t50.5144, the solution is no
longer stationary. It appears an almost periodic-doubling p
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tern for the drag~probably due to the fact that the cylinde
axis is slightly off the middle of the two flat walls! and an
almost periodic one for the lift~it is difficult to be more
precise since the final regime has not yet been reached a
end of the simulations!. The left column in Figs. 12 and 13
shows drag and lift forces as functions of time compu
with definition ~57! at cylinder boundary and the right on
shows the same quantities but computed with definition~66!.
Since the flat walls are located at a distance equal to 0.
the nearest lattice nodes, both force definitions coincide
the flat wall. The results are plotted for the static case a
three moving techniques: linear interpolations and multi
flections for the LB in fluid and LB in solid algorithms. Th
error estimations are also given in Table XIII. Since the s
lution is nonstationary, the comparison is only done, witho
averaging, when the cylinder is at the same location for
static and moving cases.

Some remarks are now in order for Re5200. First, when
the forces are computed in the standard way, the multirefl
tion LB in solid algorithm is found to be the most ‘‘oscilla
tory’’ one, followed by the LB in fluid algorithm, the linea
interpolation algorithm giving the ‘‘smoothest’’ results
When the force distribution with boundary fitting~66! is
4-23
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FIG. 12. Drag on the cylinder
as a function of time. From top to
bottom: ‘‘static,’’ linear reflection,
LB in fluid and LB in solid multi-
reflection algorithms; the force is
computed with definitions~57!,
left, and~66!, right.
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used, the smoothness of all solutions, and especially of
LB in fluid algorithm with multireflection, is improved dras
tically. One technical explanation could be that the for
computation ~66! involves populations from the next t
boundary nodes where the solution fluctuates less. A
when the surface integration error with Eq.~66! happens to
06661
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e

o,

be smaller than with definition~57!, the modified definition
improves the computation of forces since the stress va
are approximated on the surface. This is also consistent
the fact that the best filtering is achieved for the multirefle
tion algorithms, which have been designed to be the m
accurate near the boundaries.
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FIG. 13. Lift on the cylinder as
a function of time. From top to
bottom: ‘‘static,’’ linear reflection,
LB in fluid and LB in solid multi-
reflection algorithms; the force is
computed with definitions~57!,
left, and~66!, right.
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3. Moving sphere in a cylinder

We consider a sphere of radiusRs516.9 in a periodic
motion along thex axis of an outer cylinder of radiusRc
542.5 and length,5189 alongx ~in l.u.!. The sphere starts
from the point (x0 ,y0 ,z0)5(30.65,4.225,0), with respect t
the cylinder axis, and moves with velocityuw520.04. The
06661
moving solution is compared with the static one after
cycles across the cylinder. Quasistationary solutions
reached in them and s regimes. The results for forces ar
shown in Table XIV. The drag and lift values are rescaled

the viscous scaling MW (t)/(6pmiuW wiRk* ), where k*
is a function of the ratio between the sphere and cylin
4-25
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I. GINZBURG AND D. D’HUMIÈRES PHYSICAL REVIEW E68, 066614 ~2003!
radii given in Refs.@36,42#. The table shows that in thi
test the errors on the force are about twice smaller for
multireflection algorithm than for the linear interpolatio
one.

VII. CONCLUSION

We have shown that boundary conditions based on a
approach such as Ref.@14# can be analyzed in the spirit o
Refs.@2–4,10# and their accuracy can be assessed for sim
flows such as Couette or Poiseuille-Hagen ones. From
analysis we have been able to derive new boundary co
tions for which a third-order kinetic accuracy can be prov
theoretically for steady linear or nonlinear LB solution
leading to the Stokes and Navier-Stokes equations. As a
sult of this third-order accuracy, linear Couette and Poiseu
flows are exact solutions of the lattice Boltzmann equat

TABLE XIII. Same as Table XII fort50.5144.

A B C D
Force at disk

StaticFy 1.2131024 0.281 0.279 0.281
StaticFz 0.86 0.797 0.797 0.797
E(r)(Fy) (%) 1.6231022 1.131022 3.131022 1.0
E(r)(Fz) (%) 3.6 3.78 15 4.77

Force at flat

StaticFy 3.2731023 20.279 20.281 20.278
StaticFz 20.91 20.911 20.911 20.911
E(r)(Fy) (%) 4.131023 6.731022 0.08 6.731022

E(r)(Fz) (%) 0.21 0.24 0.29 0.24
mass loss
per period 2.931027 1.931027 5.231027 1.631027

TABLE XIV. Comparison between the static and moving so
tions for a sphere in a cylinder att50.55~Re581! using the linear
interpolation and multireflections LB in fluid algorithms.

Linear Multireflection
Force at sphere

StaticFx 0.683 0.688
StaticFy 23.0231023 23.0231023

E(r)(F̄x) (%) 2.48 1.63

E(r)(F̄y) (%) 1.731023 0.731023

E(r)(Fx) (%)~at sphere! 1.2 0.56
E(r)(Fy) (%)~at sphere! 4.031023 2.331023

Force at cylinder

StaticFx 20.682 20.689
StaticFy 3.0231023 3.0231023

E(r)(F̄x) (%) 2.79 0.54

E(r)(F̄y) (%) 831024 331024

mass loss
per period 3.231026 1.831026
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for arbitrary inclination of the flow with respect to the lattic
axes.

These exact solutions have been confirmed by numer
simulations of the corresponding flows. In addition seve
flows in periodic arrays of spheres or cylinders in the Sto
regime and of cylinders for the Navier-Stokes one have b
studied. As stated in the Introduction, our goals were se
the context of moderate resolutions and/or moving bou
aries and not in the academic context of a convergence fa
for an infinite number of grid points. In this context we ha
confirmed that, as has been found in Ref.@14#, the conver-
gence is nonmonotonic and that the usual tools to asses
accuracy order do not work, at least in their naı¨ve implemen-
tations. However we think to have shown that the linear
terpolation improves the overall accuracy over the boun
back condition for low viscosities and curved walls. Th
multireflection method provides a further improvement in t
accuracy of the hydrodynamics quantities near the walls
any combination of the collision eigenvalues.

We would like to stress that the bounce-back condit
still has several advantages: it is simple, robust, and obe
strict mass conservation. This is especially true for simu
tions in complex geometries such as those coming fr
weakly resolved tomography in which the boundary posit
is only approximately known. In addition the bounce-ba
accuracy can be very satisfactory if the following rules a
obeyed. First the no-slip condition has to be set in the mid
of the cut links. Second the eigenvalues of the collision m
trix for the odd and even moments must be chosen such
the correspondingL2 in Eq. ~41! is set to a constant valu
between 1/6 and 1/4: fixedL2 ensures viscosity independe
measurements. Also the overall accuracy of the bounce-b
condition could be improved for macroscopic quantiti
through a careful calibration~when available! of the effective
boundary locations~see, for instance, Ref.@25#!. Note, how-
ever, that this calibration does not cure the Knudsen lay
near the boundary, but only averages their effects.

The present theoretical analysis, done for steady flo
has to be extended to the unsteady situations. Two theore
difficulties have also to be studied in more details. Firs
would be useful to go beyond the heuristic arguments u
here to deal with the stability issue. Second it would also
interesting to find a way to keep the accuracy of the mu
reflection without any mass loss or at least to further inv
tigate its effect. So far we did not see any dramatic effects
long as the quantities rescaled by the density use its ac
value at the measurement time. It should also be noted
most methods for moving boundaries suffer some mass l

The multireflection scheme requires at least three fl
nodes along a link to be applied. We did not investigate
full detail what happens when this condition is not fulfille
Among the different possible choices we have looked at,
following recipes have been used. When there are only
fluid nodes, the missing population is taken from its value
the previous time step~see the end of the last paragraph b
one of Sec. III A!; when there is only one fluid node, we us
the bounce back condition. A similar problem, which h
also been left for future work, is the case of links tangent
the boundary or cut twice between two adjacent nodes
4-26
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our implementation they are considered as fluid links as l
as the end nodes are fluid ones. The effect of differ
choices remains to be investigated.

Finally, the method has been extended to moving bou
aries. As seen by other authors, we confirm that the m
difficulty of these simulations comes from an unreliable
construction of the pressure in the new fluid points, lead
to numerical fluctuations of the physical quantities. Althou
we have only done a preliminary study, interpolations a
multireflections exhibit a surprisingly good overall stabili
even in changing geometries.
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APPENDIX A: TAYLOR EXPANSION
FOR BOUNDARY CONDITIONS

In this section we are giving the Taylor expansion f
steady solutions of the LB equation. To shorten the formu
the time dependencies are omitted and the right-hand s
are taken atrWb . Note also that the second-order derivativ
of P and of the nonlinear terms are neglected since t
appear at the same order as the third-order derivatives o
momentum,

f q̄~rWb!5tp* S P2 j q2I fFq1
3 j q

22 j 2

2r̃
D 1 f q

(1)2 f q
(2) ,

~A1!

f̃ q~rWb!5tp* S P1 j q1I fFq1
3 j q

22 j 2

2r̃
1FqD

1~12ln! f q
(1)1~12l2! f q

(2) , ~A2!

f̃ q~rWb2cWq!5tp* S P1 j q1I fFq1
3 j q

22 j 2

2r̃
1FqD

1~12ln! f q
(1)1~12l2! f q

(2)

2tp* F ]qP1]qj q1]qS 3 j q
22 j 2

2r̃
D G

1
1

2
tp* ]qqj q2~12ln!]qf q

(1) , ~A3!
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f̃ q~rWb22cWq!5tp* S P1 j q1I fFq1
3 j q

22 j 2

2r̃
1FqD

1~12ln! f q
(1)1~12l2! f q

(2)

22tp* F ]qP1]qj q1]qS 3 j q
22 j 2

2r̃
D G

12tp* ]qqj q22~12ln!]qf q
(1) , ~A4!

f̃ q̄~rWb!5tp* S P2 j q2I fFq1
3 j q

22 j 2

2r̃
2FqD

1~12ln! f q
(1)2~12l2! f q

(2) , ~A5!

f̃ q̄~rWb2cWq!5tp* S P2 j q2I fFq1
3 j q

22 j 2

2r̃
2FqD

1~12ln! f q
(1)2~12l2! f q

(2)

2tp* F ]qP2]qj q1]qS 3 j q
22 j 2

2r̃
D G

2
1

2
tp* ]qqj q2~12ln!]qf q

(1) . ~A6!

APPENDIX B: EXAMPLES OF MOMENTUM TRANSPORT

1. Noninclined channel

When the force addition in each cell is independent on
position of the boundary~i.e., effective volume of the cell!,
the momentum transport definition~57! is independent on
the actual boundary position@see relation~65!#. Conse-
quently, even if the populationf q̄ is constructed to better fi
the boundary, the forceMW (c) will stay the same as for the
bounce-back reflection.

Let us illustrate this by the simple example of Poiseui
flow in a channel of widthH. If the momentum transport is
calculated with definition~57!, k is equal to nQ/(FHl),
whereHl is the number of liquid points across the chann
Even if the exact valueFH3/(12n) of the flow rateQ is
used, the measured permeability is equal to its exact va
H2/12 only if H5Hl , whereas the result is always exact wi
definition ~66!.

2. Example: Inclined channel

We consider either a Couette flow,

]2 j x8

]z82
50, j x8~h8!51, j x8~2h8!50, r[r0 , ¹W P[0,

~B1!

or a Poiseuille flow
4-27
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2Fx85n
]2 j x8

]z82
, j x8~6h8!50, r[r0 , ¹W P[0,

~B2!

in an inclined channel of width 2h8, where the coordinate
are written in a system rotated to align thex8 axis with the
flow as

x85x cosu1z sinu, z852x sinu1z cosu,

x5x8cosu2z8sinu, z5x8sinu1z8cosu. ~B3!

The exact linear solution is given, for the Couette flow, b

Ni~rW !5tp* H cs
2r01 j x8cix81

1

ln

] j x8

]z8
cix8ciz8J ,

i 50, . . . ,bm , ~B4!

and, for the Poiseuille flow, by

Ni~rW !5tp* H cs
2r01~ j x81I fFx8!cix81

1

ln

] j x8

]z8
cix8ciz8

2
n

l2

]2 j x8

]z82
cix8~123ciz8

2
!J , i 50, . . . ,bm .

~B5!

The substitution of Eqs.~B4! and ~B5! into Eqs. ~66! and
~67!, with the help of relation~68!, yields atz856h8 the
exact result

MW (n)~6h8!5 (
qPC(6h8)

tp* H 2cs
2r0

26n
] j x8

]z8
U

6h8

cqx8cqz8J cWq , ~B6!

with
n
] j x8

]z8
5

n

2h8
for Couette flow ~B7! xact

06661
n
] j x8

]z8
U

6h8

57Fx8h8 for Poiseuille flow. ~B8!

For the Couette flow, relation~B6! reads

MW (n)~6h8!5ASS cs
2r0nW 66

n

2h8
iWsD , ~B9!

wherenW 6 are the normal vectors atz856h8 as defined in
Sec. IV and iWs is the unit vector along the flow. For th
Poiseuille flow, relation~B6! reads

MW (n)~6h8!5AS~cs
2r0nW 61Fx8h8 iWs!, ~B10!

then the total momentum transport,MW (n)5MW (n)(2h8)
1MW (n)(h8)5VefFx8 , is equal to the force applied in theef-
fective volume Vef52h8AS, whereas it is in the volumeVl ,
independent of the boundary conditions, when using defi
tion ~57!.

3. Example: Circular pipe

The solution of the Poisson equation in a circular pipe
radiusR is

j y52
Fy

4n
~r 22R2!, r 25x21z2, 0<r<R. ~B11!

For this flow the second-order expansion gives also an e
solution similar to Eq.~B5! and relation~66! is also exact.

TABLE XV. Scaled drag and seepage velocity for a square ar
of cylinders between moving flat walls as functions of the volum
fractionsc.

c Fd/muw Qz /ruw

0.1 5.34388 0.384425
0.2 6.86103 0.297680
0.3 8.75675 0.232982
0.4 11.4558 0.177666
0.5 15.7519 0.127767
0.6 23.8738 0.0812631
0.7 45.9788 0.0368363
0
5
7
2
4
2
1

TABLE XVI. Re numbers and the corresponding dimensionless apparent permeabilityk̄5k/kS values for
a 662 box; kS corresponds to Eq.~80!.

c50.2 c50.3 c50.4 c50.5 c50.6

22.66 0.86 12.06 0.93 13.64 0.93 23.82 0.88 22.33 0.9
29.44 0.84 23.26 0.86 25.28 0.86 28.89 0.86 30.30 0.8
42.56 0.81 43.40 0.80 46.46 0.79 52.34 0.78 47.97 0.7
67.85 0.77 81.18 0.75 56.52 0.77 71.67 0.74 64.10 0.7

102.0 0.74 96.12 0.74 104.0 0.71 95.24 0.71 113.0 0.6
128.4 0.73 124.6 0.72 157.5 0.67 149.9 0.66 124.1 0.6
151.9 0.72 152.8 0.71 171.4 0.66 174.6 0.65 131.4 0.6
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Since the value ofn] r j y at r 5R is 2RFy/2, definition
~66! yields

MW (n)'
RFy

2
2pR, iWy , ~B12!

where, is the length of the cylinder along they axis. Then
the accuracy with the modified definition depends on
evaluation of the surface integral 2pR, in Eq. ~B12!.
Whereas for definition~57!, relation~65! reads

MW (c)5FyV
l iWy , ~B13!

and the precision of the total force computation depends
the accuracy of the discretization of a circle on lattice ce
Vl /,'pR2.

APPENDIX C: MULTIPOLE SOLUTION FOR A FLOW
PAST SQUARE ARRAY OF CYLINDERS BETWEEN

FLAT WALLS

A quasianalytical solution is obtained from a modificati
of the multipole procedure@35# to capture Dirichlet condi-
tions at the flat walls. The method is based on the comp
tion of the stream functionc as a truncated series of term
which are the solution of
s

D

hy

y

e

06661
e

n
:

a-

D2c50, ~C1!

and satisfy the no-slip condition on the cylinder and the sy
metries with respect to its center. The coefficients are t
obtained from a least-square fit of boundary conditions ay
5H and z5H. In Ref. @35# the boundary conditions arec
51 andv50 on the planey5H and]zc5]zv50 on the
planez5H in order to match the periodic conditions and
scaled seepage velocity. In our calculation the boundary c
ditions are]yc52uW w and ]zc50 on y5H and P50 and
]zc50 on z5H.

The only difficulty we have found was a severe loss
accuracy~around one digit per term! when summing the se
ries. We have solved the problem by doing the calculat
with the MATHEMATICA software with an intermediate accu
racy set to twice the number of terms in the sum. The so
tion for the dragFd is normalized as in Eq.~80! and tabu-
lated in Table XV which contains also the seepage veloc
value scaled by the wall velocityuW w .

APPENDIX D: RELATIVE PERMEABILITY OF A SQUARE
ARRAY OF CYLINDERS

As reference values, we give in Table XVI the relativ
permeability obtained by the LB method with the linear i
terpolation as described in Sec. V B.
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